Laserpulse bei extrem tiefen Temperaturen

Physiker der Universität des Saarlandes kontrollieren Quantenbits

| Autor / Redakteur: Universität des Saarlandes / Ulrike Ostler

Jonas Becker, Erstautor der Qubits-Studie, mit der experimentellen Apparatur zur Kühlung der Quantenbits.
Jonas Becker, Erstautor der Qubits-Studie, mit der experimentellen Apparatur zur Kühlung der Quantenbits. (Bild: AG Becher, Saar-Uni)

Physiker der Saar-Uni haben eine Methode entwickelt, um Qubits in Diamant zu kontrollieren. Das zielt auf eine längere Nutzung für Rechenoperationen. Dafür müssen sie die Quantenbits nahe an den absoluten Temperatur-Nullpunkt herunterkühlen.

Quantencomputer, die bestimmte Probleme im Vergleich zu heutigen Rechnern um ein Vielfaches effizienter lösen können, stecken technisch noch in den Kinderschuhen. Die präzise Kontrolle ihrer Recheneinheiten, der Quantenbits (Qubits), ist außerordentlich herausfordernd, da diese in der Regel sehr kurzlebig sind. Dies gilt insbesondere für Quantenbits, welche in Festkörpern eingebettet sind. Doch die Physiker der Universität des Saarlandes kontrollieren Quantenbits mithilfe von Laserpulsen - bei extrem tiefen Temperaturen. (Ihre Ergebnisse haben die Wissenschaftler in der aktuellen Ausgabe des Fachmagazins „Physical Review Letters“ publiziert.

Es erinnert an den Versuch, mit einem großen Tapetenpinsel und in Boxerhandschuhen die hauchfeinen Konturen der Mona Lisa zu restaurieren: Geht ein Pinselstrich nur ein wenig daneben, ist das Werk ruiniert.

Was die Quantenphysiker mit Quantenkontrolle bezeichnen, ist ähnlich kompliziert wie diese – fiktive – kunsthistorische Jahrtausendaufgabe es wäre. Denn den Zustand eines Quantenbits (Qubit), der Recheneinheit eines Quantencomputers, ist extrem flüchtig und labil, so dass es höchst präziser Kunstgriffe bedarf, um diesen nützlichen Zustand möglichst lange zu erhalten. Den Saarland-Physikern um die Professoren Christoph Becher und Pavel Bushev ist das gelungen.

Quibits mit kalten Füßen

Sie haben diesen Überlagerungszustand (siehe: Kasten), in dem sich zum Beispiel ein Atom in zwei Zuständen gleichzeitig befindet, in Kooperation mit Kollegen aus Cambridge bei extrem tiefen Temperaturen von nur vierzig tausendstel Kelvin (vierzigtausendstel Grad über dem absoluten Temperaturnullpunkt) untersucht und mithilfe von Laserpulsen gezielt kontrolliert. Das Quantenbit ist in ihrem Fall ein so genanntes Silizium-Fehlstellen-Farbzentrum, ein gewollt eingebauter „Fehler“ in der atomaren Gitterstruktur eines künstlichen Diamanten, der aus Kohlenstoff besteht. Statt zweier Kohlenstoffatome befinden sich hier zwei Fehlstellen im Gitter, die ein Silizium-Atom in der Mitte einschließen. Die unterschiedlichen Zustände des Defekts können für die Quanteninformationsverarbeitung, also zum Beispiel zum Rechnen, genutzt werden.

Die Physiker mussten dabei aber ein Problem umgehen: Je höher die Temperatur ist, desto stärker werden die Atome des Gitters in Schwingung versetzt, da sie die Energie aus der Umgebung aufnehmen. Je wärmer es also ist, desto stärker ist dieser Effekt. Dabei reichen schon wenige Grad über dem Nullpunkt aus, um die Schwingungen so stark werden zu lassen, dass der angestrebte Überlagerungszustand verloren geht.

Mit dem Herunterkühlen des künstlichen Diamanten auf wenige Tausendstel Grad über dem Nullpunkt geraten auch diese störenden Einflüsse in den Hintergrund, da bei solch tiefen Temperaturen die Kristallschwingungen praktisch vollständig ausgefroren sind. Die große Herausforderung hierbei besteht zum einen darin, die einzelnen Qubits mit dem Laser in einem stabilen Quantenzustand zu erzeugen und dort zu halten. Zum anderen darf natürlich nicht zu viel Wärme an den Diamant abgegeben werden, um die tiefen Temperaturen zu erhalten.

Jonas Becker, Erstautor der Qubits-Studie, mit der experimentellen Apparatur zur Kühlung der Quantenbits.
Jonas Becker, Erstautor der Qubits-Studie, mit der experimentellen Apparatur zur Kühlung der Quantenbits. (Bild: AG Becher, Saar-Uni)

Keine Erkenntnis ohne Mikroskop

Zu diesem Zweck entwickelte das Team um Doktorand Jonas Becker, der nach seiner Promotion inzwischen an der Universität Oxford forscht, ein neues, hochauflösendes konfokales Mikroskop, welches die Quantenbits präzise darstellen kann und Kontrolle dieser Qubits bei Millikelvin-Temperaturen mittels Laserpulsen ermöglicht. Gegenüber anderen gängigen Kontrolltechniken, etwa mit Mikrowellen, bietet dieses Verfahren den großen Vorteil, dass der Wärme-Eintrag durch einen gezielt fokussierten Laser ausschließlich direkt am Qubit erfolgt und zudem sehr gering ist, da bereits wenige Nanowatt an Laserleistung für eine vollständige Kontrolle ausreichend sind. Wie die Forscher im weiteren Verlauf der Experimente herausfinden konnten, verlängern sich die Kohärenzzeiten, in denen das Qubit stabil im Überlagerungszustand existiert, allerdings nur ein wenig.

Neben diesem unerwarteten Resultat – die Physiker hatten eigentlich mit einer deutlichen Verlängerung des Kohärenzzustandes gerechnet – gewannen sie aber andere wertvolle Erkenntnisse. Sie konnten die Interaktion der Qubits mit ihrer Umgebung detailliert untersuchen und einen weiteren limitierenden Prozess finden, der die Quantenkontrolle stört. Denn in dem künstlich hergestellten Diamanten gibt es neben den „gewollten“ Verunreinigungen, den Silizium-Fehlstellen-Zentrum, an manchen Stellen auch unerwünschte Verunreinigungen, die bei der Herstellung des Diamanten entstehen.

Die verwendete Kühlapparatur mit konfokalem Mikroskop.
Die verwendete Kühlapparatur mit konfokalem Mikroskop. (Bild: AG Becher, Saar-Uni.)

Pro einer Million Atome sind das nur 13 „ungewollte“ Verunreinigungen mit Stickstoff-Atomen. Aber schon diese geringe Anzahl an „falschen“ Atomen im Kristallgitter stört mit ihrem Magnetfeld den Überlagerungszustand der gewollten Silizium-Fehlstellen-Zentren. Dieser Effekt wäre den Forschern gar nicht aufgefallen, wenn sie das Experiment nicht so nahe am absoluten Nullpunkt gemacht hätten. Die Störung durch die bereits erwähnte Schwingung, die durch Wärme-Eintrag ausgelöst wird, überlagert die Störung durch die Verunreinigungen deutlich.

Weitere Verwendung

Dieses Wissen kann nun dazu genutzt werden, neue, noch reinere Proben zu entwickeln, die die gewünschten Eigenschaften aufweisen. Zudem kann die entwickelte Mikroskopietechnik nun dazu genutzt werden, auch andere Kandidaten für Festkörper-Quantenbits bei Millikelvin-Temperaturen mithilfe von optischen Methoden detailliert zu untersuchen.

In einer früheren Studie konnten die Physiker um Christoph Becher und Jonas Becker bereits zeigen, dass mithilfe ultrakurzer Laserpulse extrem hohe Kontrollgeschwindigkeiten erreicht werden können.

Ergänzendes zum Thema
 
Die beteiligten Arbeitsgruppen

Was meinen Sie zu diesem Thema?

Schreiben Sie uns hier Ihre Meinung ...
(nicht registrierter User)

Kommentar abschicken
copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 45122367 / Komponenten)